

 [image: Pragmatic Bookshelf]

 PragPub 2009-07: Issue #1
Table of Contents
Features
	The Layoffs Are Coming!
by Andy Lester

 Andy wrote the book on finding tech jobs
 (Land the Tech Job You Love).
 Here he tells you how to keep the job you have.

	Why Clojure?
interviewed by Michael Swaine

 Rich Hickey created Clojure, a modern dialect of Lisp that
 targets the JVM. In this PragPub interview,
 Rich explains what that means to you.

	When Things Go Wrong
by Stuart Halloway

 As Stuart demonstrates in this deep immersion in Clojure coding,
 one of Clojure’s strengths is how it shines when things go wrong.

	
 Pragmatic Publishing

interviewed by Michael Swaine

 Dave Thomas talks about the decisions behind Pragmatic Bookshelf’s
 comprehensive ebook program, and how book publishing is undergoing a
 transformation, from electronic versus paper to direct sales
 versus the channel.

Departments
	
 Welcome to PragPub

by Andy Hunt and , Dave Thomas

 Time to start a real dialogue among highly talented, skilled professionals who care about their craft.

	
 Up Front

by Michael Swaine

 Michael says hello, world.

	
 Choice Bits

 Tweets, posts and chatter on job searches and revolving doors,
 book reviewers and bonus tracks, Google Wave and shampoo bottles,
 desires, donkeys, and daydreams.

	
 How Do We...?

 People often ask how we do what we do. This monthly series
 explains…

	Swaine’s World
by Michael Swaine

 In which Mike loses his job and offers you career advice.

	The Quiz

 A monthly diversion at least peripherally related to programming.

	Shady Illuminations
by John Shade

 Columnist John Shade casts a jaundiced eye on Microsoft’s latest attempt to out-google Google.

	
 Calendar

 Author sightings and other notable events.

 Except where otherwise indicated, entire contents
 copyright ©
 2009
 The Pragmatic Programmers.

 Feel free to distribute this magazine (in whole, and for free)
 to anyone you want. However, you may not sell this magazine or
 its content, nor extract and use more than a paragraph of
 content in some other publication without our permission.

 Published monthly in PDF, mobi, and epub formats by The
 Pragmatic Programmers, LLC, Dallas, TX, and Raleigh, NC. E-Mail support@pragprog.com, phone +1-800-699-7764.
 The editor is Michael Swaine (mailto:michael@pragprog.com).
 Visit us at http://pragprog.com

	 ISSN: 1948-3562

 Welcome to PragPub

 by Andy Hunt and , Dave Thomas

	

	Greetings! Welcome to Iteration One of PragPub, our monthly excuse to hang out at the virtual water cooler with you.
	

	

	PragPub is a look into the pragmatic world: it’s a peek at what we’re excited about, what our authors are excited about, and what we hope you can get excited about. It’s a place where together we can share our obsessions, er, “passions.”
	

	

	We love learning new things. We love playing with technology, and seeing what cool things we can use it for. But it’s not always the shiny new things that are important: it pays to remember how we got here in the first place. To reconsider Fred Brooks, Kristen Nygaard, or Kent Beck’s thoughts under a modern microscope. To look at other industries, other professions, and learn from their successes and failures as well. To look at the full range of our lives, not just those intense hours spent on the job itself.
	

	

	That’s what we want to accomplish with PragPub. The articles in this first iteration are available in PDF, mobi and epub formats, for reading on your computer, iPhone, Kindle, Sony Reader, or other device. In future iterations, you may have other exciting options. We’re counting on adapting and evolving PragPub to best suit your needs, according to your feedback.
	

	

	Magazines have historically been a monologue. We prefer a dialogue—not a screaming mob, as you might find elsewhere on the net, but a real dialogue among highly talented, skilled professionals who care about their craft. We care, and we know you do too. After all, we can’t do it alone.
	

	
So please extend a warm welcome to Michael Swaine, author and former editor-in-chief and editor-at-large for many years at Dr. Dobb’s Journal. Michael brings his considerable experience and industry knowledge to these pages, and we’re proud to have him on board, to help shepherd the dialog.
	

	

	Welcome to your magazine. Welcome to PragPub.
	

	

	-Dave & Andy, Publishers.
	

 Up Front

 Iteration One

 by Michael Swaine

 What do you think of our first issue? Help us make PragPub the kind of publication you’d like to
 read. We’re eager to hear from you.

 Welcome to the premier issue of PragPub. I’m your host, Michael Swaine.

	 As you may have noticed, we’re calling these first few issues the First Iteration. We’re firm believers in the power of agile development. Dave Thomas and Andy Hunt have built an agile publishing company, and this will be an agile magazine. That means that this is truly just the beginning—our first “Hello World.” Our aim is to create a real 21st century version of that oh-so-last-century medium, the magazine. Since nobody, least of all us, knows what that actually means, we’ll be iterating (a.k.a. “making it up”) as we go along.

 One thing we know is that it will emphasize the pragmatic in programming
 and life. Pragmatic Programmers get the job done, and do it well, Andy
 and Dave said in The
 Pragmatic Programmer back in 2001. That’s the book that launched The
 Pragmatic Bookshelf line of books. As Dave and Andy explained then,
 pragmatic derives from a Greek word meaning “to do.”

 This monthly publication is all about doing. You’ll find articles here on programming
 in Clojure, how to hang on to your tech job and how we do the things we do.
 Upcoming articles will feature
 in-the-trenches Android and iPhone development and refactoring your career.
 Some articles will be written by our Pragmatic Bookshelf
 authors, but they won’t be mere book excerpts, but new
 articles written expressly for
 PragPub—and all free.

 But we’ll also live-link you into our Forum at The Pragmatic
 Programmers site, as well as to Andy’s and Dave’s blogs,
 where you can see what’s on their minds right now. Because we
 want your feedback, we have a suggestion box. It’s called
 “I’d like a book that covers…;” But we want your ideas for this
 magazine, too. Email us
 or join the discussion in our Forum.

 There’s a vibrant community growing among our readers and authors, and we want
 to make it easy for you to join in.

 And because there’s more to the coding life than coding,
 we’ll feature fresh content from our Pragmatic Life series
 authors and editors every month.

 So enjoy this first monthly issue of PragPub. And did we mention
 it’s free?

 -Michael Swaine, editor

 Choice Bits

 Overheard on the Intertubes

 Wading into the chatterstream in hip boots, we wield the Axiom of Choice
 with gleeful abandon.

 What’s Hot

 Top-Ten lists are passé—ours goes to 11.
 These are the top titles that folks are interested in currently,
 along with their rank from last month. This is based solely on direct
 sales from our online store.

	
			1^	4	iPhone SDK Development

			2^	NEW	Language Design Patterns

			3v	1	The RSpec Book

			4v	2	Agile Web Development with Rails, Third Edition

			5^	NEW	Agile Coaching

			6v	3	Programming Ruby 1.9

			7v	6	Programming Clojure

			8v	7	Writing Your First iPhone Application

			9^	10	Coding in Objective-C 2.0

			10^	NEW	Core Data

			11^	NEW	Hello, Android

	

 And Here’s What Folks Are Saying…

	This is journalism as beta…. [E]very time Google releases a beta,
 it is saying that the product is incomplete and imperfect.
 That is inevitably a call to collaborate. It is… a statement of humanity
 and humility: We’re not perfect.
 —
 Jeff Jarvis, BuzzMachine

	[W]hat does the average geek do when he wants to find a job? He hits the job boards,
 doing simple keyword searching on CareerBuilder or Monster or one of the niche sites.
 But the hard truth is that almost four times as many jobs (29.0%) are filled from
 personal networking or hard research finding a company that’s a fit. It just doesn’t make sense
 to turn to the job boards as your primary source of
 finding a job.
 —
	 Andy Lester, from his blog, The Working Geek

	Functional MRI scans showed that the area of the brain responsible
 for complex problem solving does not go dormant when you daydream,
 but in fact becomes very active.
 —
	 Andy Hunt in his blog

	[A] revolving door gave me ideas about software process.
 3 variables interact: latency, throughput, and variance.
 —
	 @KentBeck

	Their ads don’t say “Urban Spoon runs on your iPhone.
 It can find you nearby restaurants.” They would say something like,
 “Say you’re hungry and want to know what’s nearby that you might enjoy.”
 Their ad starts with your desire and gives you a solution….
 —
	 Daniel Steinberg in
	 his PragLife
	 blog

	Associate to IT guy: So, my touchscreen hasn’t been working,
	so I hit it harder and now there’s a crack in the screen.
	IT guy: Your computer isn’t touchscreen.
 —
 from Overheardintheoffice.com

	I would really like to see a book on Pragmatic Django Devel.
	I know there are few books already out, but I love Pragmatic books—they
	are always a good read—and I would definitely buy one.
 —
	 Tanja Pislar

	Seconded.
	—
 Khurrum Maqbul from Pragmatic discussion
	 forum “I’d
	 like a book that covers…”

	Perhaps getting a jump start on “Reia” . . . Ruby Syntax,
	Erlang VM, Concurrent goodness. Yeah its an Alpha language,
	and still needs work. But off to a promising start.
 —
 Brad
	 Hutchins from Pragmatic discussion
	 forum “I’d
	 like a book that covers…”

	[I]f the shampoo bottle in the shower is turned around half the time,
 why isn’t the logo on both sides?
 —
	 @KentBeck

	okay, Google Wave is a game changer.
 —
 Brandon Zeuner via Twitter

	Since last summer we’ve been running
	iPhone training courses
	and producing iPhone-related
	 screencast video tutorials. Unfortunately,
	even in a 4-day course or a 1-hour screencast, you have to leave
	some stuff on the cutting room floor. Though we’re learning new
	iPhone development tips and tricks every day, they don’t all get
	brought up during a course or warrant a full-length video tutorial.
	But it’s good stuff we don’t want you to miss!

	So, we recently started releasing
	Pragmatic Studio
	 Bonus Tracks. These are free, short
	screencasts focused on a single iPhone tip, trick, or technique
	that you can quickly apply. We plan to release a new bonus track
	every week or so to keep you on top of your game. Whether you’ve
	attended one of our courses or not, we hope you enjoy these bonus
	tracks all the same.
 —
	 Mike Clark.
	 The Pragmatic Studio
 is owned and operated by Mike and Nicole Clark.

	HR rep: Oh, yeah… I was going to do that. But then I got
	distracted by the festive donkeys.
 —
 from Overheardintheoffice.com

	I keep on buying books from the Pragmatic Programmers,
 and then Amazon recommends them for me,
	and I have to tell them I already own it.
 —
 Andrew Grimm via Twitter

	When the Church of the Savvy recognizes itself
 it’s always transfigured into the cathedral of truth.
 —
 Jay Rosen via Twitter

 How Do We...?

 How Gerbils Make Sausage

 People often write in and ask us how we do things: how are the
 PDFs stamped? how do we ship books? what technology do we use to
 author books? Each month we’ll answer one of these questions.

 This month's question:
 How do you add my name to the bottom of the PDFs I buy?

 We refuse to hobble our electronic books with Digital Rights
 Management (DRM) restrictions. We feel that, just as when you
 buy a paper book, you should be able to use your electronic
 books as you see fit. You should be able to copy them to your
 laptop, make backups, read them on your phone or eBook
 reader—whatever you need. We just ask that you respect our
 copyright, pay for the books you use, and don’t give those books
 to others.

 To help remind readers that we’re giving them responsibility for
 their books, we add their name to the bottom of each page of
 their PDFs. (We once toyed with the idea of putting their credit
 card number there, but prudence won out.) So how do we do that?

 During the regular build process (driven by rake,
 of course), we produce master PDF, mobi, and epub versions of a
 book. These versions are checked into a subversion repository.

 Over in the EC2 cloud, we have a variable number of stamping
 machines running. Each of these machines has a checked-out copy
 of the book masters.

 The stamping machines use a REST interface into our order
 system to look for new purchases and requests for book
 regenerations. When a request comes along, they take the master
 PDF and run it through a program that adds the annotations you
 see (along with a few other annotations you don’t see) to
 produce a personalized PDF. This PDF is then stored in S3. This
 is the PDF that you download.

 We used to use some commercial software to do the stamping, but
 the licencing terms became ridiculous, so we’ve switched to
 using the wonderful open
 source iText
 library. It’s a Java program, so we drive it from our Ruby
 code using a simple popen call, passing stamping
 parameters to the stamper’s standard input.

 Once stamping is complete, the EC2 machine uses another REST
 request to tell the online store, and your download becomes
 available.

 And how do we tell the stamping machines to update their master
 copies of the books when we make changes? Our book build process
 tells the online system, and the system tells the stampers when
 they next request work. They then simply issue an svn
 up and continue.

 Swaine’s World

 Gerbil, Interrupted

 by Michael Swaine

 I was happily spinning my wheel when the call came from HR. Due to the economic downturn, the magazine I had been associated with for 25 years was ceasing print publication and all the gerbils were being set free.

 I’d been running in place for so long I guess I experienced a touch of vertigo when the wheel stopped. Over the ensuing weeks, friends observed tell-tale signs: I was eating more, sleeping longer, and gnawing on the furniture. After a few weeks I did what you probably would have advised if I’d thought to ask you: I emailed Dave and Andy, we had a really nice chat, and they offered me this shiny new wheel.

 Speaking of the economy, apparently there’s some sort of recession going on.

 Venture capital spending was off over 70 percent at the end of last year. Just since January there have been major layoffs at AMD, Amazon, AOL, Autodesk, Best Buy, Borland, Bose, Broadcom, Circuit City, Cisco, Dell, Digg, Disney, Electronic Arts, Ericsson, Expedia, Freescale, Gartner Group, Google, Hitachi, IBM, Intel, Lenovo, Logitech, Microsoft, Motorola, Nat Semi, NEC, Nokia, Oracle, PBWiki, Philips, Razorfish, SAP, Seagate, Sprint, Sun, Technorati, Teradyne, TI, Toshiba, Unisys, and Yahoo, to name a few. In the case of Microsoft and IBM, we’re talking thousands of jobs.

 Isn’t it fortunate, then, that you’re in a recession-proof industry?

 At least that’s what conventional wisdom says, and in fact the jobs being cut at tech firms are likely to be anything but software development jobs. If you’re good, the same reliable source (conventional wisdom) says, your skills are in demand.
Well, yes, but.

 I mean it’s great if your skills are more in demand than ever, but what if the company you work for just went belly-up? Or your client list is experiencing embarrassing shrinkage? Or your existing clients are getting stingy?

 Whether or not software development is a recession-proof industry, your skills may be proof against the economic downturn. But that doesn’t mean you won’t suddenly find yourself having to hustle more than you’re used to. Maybe you’ve never had to look for work. Maybe it has always come to you. And now you may have to (shudder) market yourself. I hope to convince you that tooting your own horn is not that hard, not that bad, and you’re already doing it.

 The First Thing

 Andy Lester identifies the first hurdle you have to get over. Don’t be shy about the fact that you’re looking for work. “Tell people you’re available. Online, that means blogging about it and mentioning it in some online fora. It also means telling family and friends. [You don’t have to say] ‘Please give me a job,’ but [do] let people know. Getting the word out is the first step in working your social network for potential leads.”

 But can’t you just let your work speak for you? In some ways, you can. Your work on open source projects can carry a lot of weight with savvy employers. But be a significant and visible contributor. That says you’re not just a 9-to-5er, and it speaks volumes about your accomplishments. As Andy says, “Anyone can write Struts or Nant on their résumé. Very few can write Struts committer or Nant committer.”

 But you must be sociable. For some of you, that’s not a problem, but for some of us, it’s a challenge. at least you can be selective about it and expend your social energy judiciously. Professional user groups can be great for networking and meeting potential employers in a low-pressure setting. If you can speak at a tradeshow or conference, do so. It makes you an accepted expert. Got to industry afterparties. As for the after-afterparties and after-after-afterparties, you’ll have to make that call yourself.

 Work Your Social Network

 As everyone knows, Facebook is now the eight largest country in the world. The recession has been very, very good to social networks. LinkedIn, which is all about professional networking, has seen a 65 percent increase in recommendations.

 “Make sure you have recommendations on Linkedin,” my friend Paul Freiberger advises. Paul has helped a lot of people refine and promote their ideas, both at McKinsey Corp. and earlier at Paul Allen’s idea incubator, Interval Research, and is now helping people refine the way they present themselves at his own company, Shimmering Résumés. “Work your Linkedin networks. Participate in groups that share your interests. You may find people participating in these groups who are at companies that are hiring.” After passing along this advice, he reminded me to write him a LinkedIn recommendation. Nice to see the doctor taking his own medicine.

 Yes, You Need a Résumé

 You need a résumé. Also a blog. And they are not the same thing. “Résumés,” Guy Kawasaki says, “are… premature and unsentimental obituaries.” And they’re treacherous: a poorly-written résumé is a strong case against hiring you. Read Andy’s book; there’s a whole chapter on résumés. Visit Freiberger’s site. Google Guy Kawasaki.

 Surviving Interviews

 If you get called in for an interview, don’t freak. Be cool, be honest, and try to think like the boss. Understand the hiring process. Many interview questions are intended as opportunities for you to tell your story. Know your story. Tell it. In fact you will do well to treat every question as an opportunity to tell a story.

 Marketing yourself, as Chad Fowler points out so elegantly in his book The Passionate Programmer, is not just for sluts. Selling yourself matters even if you have a job. It matters that your bosses or clients know the value of your work. And when you’re looking for work, marketing is crucial.

 I’m just relaying the advice of people who know much more than I do about this stuff. After all, when I needed a job I didn’t do any of this; I just emailed Dave and Andy. Do as the experts say, not as I do. But marketing yourself is just one key to thriving in a challenging economy. Next month I hope to reveal other keys. In the meantime I’d love to hear from you. What have been your experiences in the Great Recession? Are you thriving? What have you learned about thriving in challenging times? Email me. Or join the discussion in our forums.

 Michael Swaine is the editor of PragPub.

 The Layoffs Are Coming!

 How to Keep Your Tech Job

 by Andy Lester

 In a perfect world, your work would speak for itself, your genius
 would be universally recognized, and your job would never be at risk.
 It’s not a perfect world.

 The economy’s in the tank. Millions of people have been laid off,
 and IT jobs are not exempt from the axe. Your company’s undoubtedly
 having a sales slump, if not free-fall, and job cuts could well be
 coming.

 Don’t sweat it.

 There are two types of layoffs. The huge reductions where entire
 departments or units are sent packing at once are beyond your
 control. Corporate management decides that a large part of the
 operation is unprofitable or can be outsourced, and out you go.
 This type of layoff can’t be planned for. You find out one day that
 all twenty of you are out on the street, and there’s nothing you
 can do to prevent it.

 More likely you’ll face a more selective layoff, and you won’t even
 see it coming. Usually, a department or unit manager will be told, “You
 have to reduce your staff of twenty by three,” and it’s up to
 her to find the three least-profitable members in the group.

 That’s the layoff you can avoid, by actions that you take now.

 How to keep your job

 Assuming you’re happy with your job, your task is to keep it.
 I’m going to tell you how.

 Your goal is to be the best programmer, the best sysadmin, the most
 profitable addition to the bottom line that you can. You want to
 be in the top tier of performers in the group, so that your boss
 says to herself, “There’s no way I’d get rid of him.”

 Treat your retention as a hire

 You know that when you’re working to get hired at a company, your job is to show
 how you will add to the company’s bottom line if you are selected,
 often by citing examples from your past. When you’re looking to
 keep your job, it’s the same: You show the value you bring to the
 company, and what you’re working on for the future.

 How should you do this? Keep track of what it is you do every day, and how
 you help the company. Be consistently aware of what you’re
 learning and how you’re improving your company’s bottom line. When
 you make things better, make sure your boss knows it.

 Always look to the future. Think about how you can improve the
 department and the company, and talk about it. Make plans with
 others to make things better.

 Update your résumé

 When you’re tracking your value to the company, and documenting
 what you’ve done, put it in your résumé. Use your résumé as a tool
 to track your performance. A good résumé has work history as its
 headings and achievements as the supporting detail.

 A good résumé tells what you did, not what you were. The “what”
 should have numbers associated with it. Instead of:

	

 Yoyodyne Intl, 2006-2009
	

 	
Wrote application code in Perl for various projects.

 	
Worked both on teams and on solo projects.

 	
Strove to introduce new technologies to the department.

 Give detail that describes the value you provided, quantifying to
 give the reader an idea of scope:

	

 Yoyodyne Intl, 2006-2009
	

 	
Designed, coded and tested Perl applications for customer-facing
 web applications using Catalyst, DBIx::Class, and Moose.

 	
Worked on teams of two to eight, depending on project, as
 well as on solo projects.

 	
Taught myself Ruby and ran a pilot project for a simple user
 maintenance application using Rails. Project completion time
 was two weeks, instead of the expected six weeks.

 Don’t worry about having your résumé be too long. You can trim it
 later before sending it, but if you don’t capture the detail up
 front, chances are you’ll never get it back. You may also want to
 keep a scrap file of items that can be added to your résumé as
 necessary.

 Don’t wait until you need your résumé to spend the time to improve
 it. Tend to it as you go, and when it’s time to harvest this
 critical tool for job hunting, you’ll be rewarded.

 Don’t keep your head down

 Conventional wisdom has it that if layoffs are afoot, you want to
 keep your head down, not make waves, and reduce your chances of
 getting on someone’s Bad List. This is exactly backwards. It might
 make sense if all workers were interchangeable, but you’re not.

 Keep your head up, and let others know about what improvements
 you’ve made and value you’ve added. It’s no good to improve your
 backup process and reduce the number of tapes required if you
 keep this fact to yourself.

 You have to let your boss know, but don’t stop there. As you build
 your reputation in the organization, you’ll be working with others,
 so let them know about your valuable work while you find
 ways to help them as well.

 Be valuable beyond your department

 The only thing better than being a valuable asset to your boss, to
 your team, to your department is being valuable to those on the
 outside. Assuming that you’re doing a good job in your
 department, accolades from others in the organization are music to
 your boss’s ears.

 Don’t suck up

 The worst way to survive a layoff is by sucking up to the boss, or
 relying on a good personal relationship.

 First, it won’t work. The boss is not going to keep you in favor
 of a stronger performer just because he likes you. His job is on
 the line as well, and it does him no good to keep a weaker employee.
 Spend your time on improving yourself instead.

 Second, it will backfire. Sucking up shows weakness and desperation,
 two traits that are never good. The boss is not stupid and will
 not be fooled by your sucking up. Worse, the boss may be more
 inclined to axe you rather than be perceived as showing favoritism.

 Finally, it’s degrading to you. Hold your head high and make it
 through tough times by your intelligence and hard work.

 Start looking for your next job

 You may still lose your job. You can still minimize the impact of
 being laid off. Here’s how.

 Don’t wait for the axe to fall. Start looking now for your next
 job. Find another job that’s interesting, and assess your likelihood
 of landing that job. Get a feel for the market. Understand the
 skills wanted and opportunities offered in your job market.

 You should be doing this, layoffs or not. Unless you’re nearing
 retirement age, chances are good you’re not going to stay at your
 current job until you retire. Since you know a job change is going
 to come some time, whether by your choice or your employer’s, you
 might as well keep on top of the market.

 Make contacts who might be able to help you

 If there’s one part of your business portfolio that needs to be
 cultivated and can’t be rushed, it’s building a network of helpful
 friends and contacts.

 I was fired one Tuesday at 11am. By 4pm I had two job prospects
 with people I knew, and one with a company that a contact referred
 me to. That sort of network can’t be thrown together at the last
 minute. It came from years of working in the open source community,
 making connections, and keeping in touch with these valuable people.

 When you get tossed on the street, it’s too late to start building
 your contact file. Start today.

 You should be doing all these things anyway.

 For everyone who’s reading this but isn’t expecting layoffs,
 listen up.

	

 These rules should apply to how you live your work life anyway.
	

 All the rules above apply every day, even without the specter of
 layoffs. Whenever performance reviews come around, you’ll want
 your boss to know your value. When the boss needs top performers
 to work on a sexy new project, you want to be at the top of that
 list. When upper management starts considering whether to outsource
 your department’s operation, you and the rest of your department
 should be making it clear that your provide value no other group
 can.

 By the time you need to harvest, the best time to plant has passed,
 and you’ll be scrambling to do what you can to catch up.

 When you get laid off anyway

 If you follow the guidelines above, when the worst happens and
 you’re out on the street, you’re ready to move on. You’ve planted
 the seeds for an effective job search that puts you above most other
 candidates for whatever job you may apply for.

 Since you’ve been thinking about your value to the organization in
 terms of impact on the bottom line, you’ll be ready to analyze your
 skills and how they can apply to any future employer.

 Since you’ve been working to let your boss and others know about
 the good work you’ve been doing, and what improvements you’ve made
 to your department, you’ll be more comfortable with talking about
 these achievements in your interviews.

 Since you’ve been keeping your résumé current with your achievements,
 you don’t have to go through the frustrating step of being in a
 rush to update it and remember everything you did at the job you
 just left.

 The law of the farm: Why you must start now

 Start now. Plant a tree, grow a farm.

 The law of the farm says that you have to plant, water and tend
 your crops, and wait until they’ve grown to maturity, before they’re
 able to be harvested. There is no short-cut for this. You can’t
 work extra hard at planting and have the crops show up early. If
 you wait until autumn to plant your seeds, you’ll have nothing to
 harvest.

 When it comes to the quality of your work, and how you’re perceived
 on the job, the law of the farm holds as well. You can’t slack off
 for a year, then pull off a heroic super-project, and expect to be
 seen as a great programmer. Your users’ perceptions of you as an
 aloof, uncaring system administrator cannot be changed in a day, a
 week, or even a month.

 To make yourself be seen as the best member of the team, you must start
 today, and keep it up always.

 Don’t fear the Reaper

 I hope you’ve noticed a common thread running through this article.

 Everything that you need to do when expecting layoffs is
 something you should be doing anyway.

 You need to build contacts, improve your skills and make yourself
 useful outside your department even if you’re not expecting
 layoffs. Partly that’s because it’s just good career management,
 but mostly because there is no such thing as job security today.

 Living in fear of losing your job also lowers the quality of your
 job, and your enjoyment of it. If you’re worried about getting
 canned, it means you’re less likely to take chances, to make bold
 decisions, or to try crazy new ideas. It also means you’ll enjoy
 your job less, and life’s too short spend time at the job that
 you’re not enjoying.

 So bulk up your skills, make your achievements known, and build a
 network of valuable contacts. Start today, and keep at it always.
 Together we’ll get through this rotten economy doing the work we
 love.

 Acknowledgments

 Thanks to Pete Krawczyk for his input and insight to this article.

 Andy Lester has developed software for more than twenty years in the business
 world and on the Web in the open source community. Years of sifting through
 résumés, interviewing unprepared candidates, and even some unwise career
 choices of his own have spurred him to share what he has learned in a
 nontraditional book on the new guidelines for tech job hunting
 Land the Tech Job You Love,
 as well as on his website,
 The Working Geek. Andy is an active
 member of the open source community, and lives in the Chicago area.

 Why Clojure?

 An Interview with Rich Hickey

 interviewed by Michael Swaine

 Rich Hickey created Clojure, a modern dialect of Lisp that
 targets the JVM. In this Pragmatic Programmers interview,
 Rich explains what that means to you.

 Have you taken a look at Clojure yet?

 Clojure is one of the most interesting new languages to arrive
 on the recent scene: an elegant, clean, modern version of Lisp
 created for functional programming, designed for concurrency,
 and compiling into JVM bytecode.

 Clojure addresses the issues that have held Lisp back (libraries,
 readability, performance) while preserving its virtues. But what’s
 stirring all the interest in Clojure is its potential for
 functional programming. As Stuart Holloway points out in
 Programming Clojure,
 “Massively multi-core hardware is right around the corner,
 and functional languages provide a clear approach for
 taking advantage of it.” This is the application for which
 Clojure was created, so we knew we had to talk with its creator,
 Rich Hickey.

	ms:
	 I really appreciate your giving this time, Rich. I want to focus
 on basically one question: Why Clojure? For programmers in various
 situations, I want to ask: What’s in it for me? Why should
 I want to read about Clojure? Why should I invest the time to
 learn it? How would it benefit me to program in Clojure?

 rh:
 Sure thing.

 ms:
	 Cool. So say I’m an independent software developer and while maybe
 I’m not personally feeling the pain of the economic crunch,
 I do see signs that the nature of my client list may be
 changing. I want to be constantly learning new languages
 and technologies that broaden my options. Why should Clojure
 by on my short list of career-enhancing technologies?
	

	rh:
	 If you have not yet experienced functional programming,
 Clojure may offer the most approachable way to do so.
 Some have called it “the Python of functional programming”,
 and I’ll accept anything good that implies. Its seamless access
 to the Java ecosystem means you’ll never be at a loss for libraries,
 and your applications can be delivered in an accepted environment.
 Clojure is new, but not disconnected. The infrastructure underlying it,
 the JVM, is quite excellent technology.
	

	ms:
	 The argument for functional languages these days is all about
 multicore processors and concurrent programming. Let’s say I know
 something about functional programming and in fact have some very
 specific need for a functional language for concurrent programming.
 Why is Clojure that language?
	

	rh:
	 Clojure is designed for concurrent programming, and specifically
 advocates that a functional style and pervasive immutability are
 prerequisites for concurrency. The data structures are immutable,
 and the locals are not “variable.” However, Clojure also recognizes
 the need for state in real applications, and provides language-supported
 mechanisms for managing state that avoid the locks-and-deadlocks
 headaches commonly found in other languages. Among functional
 languages (Haskell, ML, etc.) Clojure is relatively unusual in being
 dynamically typed, and in being connected to a mainstream
 infrastructure.
	

	ms:
	 Let’s talk about that infrastructure. Say I’m a Java developer.
 I’m not afraid to learn a new language, but I’m not about to
 abandon the whole Java ecosystem. What does Clojure offer me?
	

	rh:
	 Clojure lets you do just that—learn something new and not give
 up your investment and knowledge. That’s true of all of the JVM
 languages, though—Groovy, JRuby etc. Clojure is unique there in
 giving you the performance of a compiled language and the flexibility
 of a dynamic language. Performance is closer to Java than to Python.
 Access to Java from Clojure, and Clojure from Java, is easy,
 wrapper-free, and fast.
	

	ms:
	 Clojure’s performance may be close to raw Java, but the experience
 of programming in Clojure is very un-Javalike.
	

	rh:
 Clojure may be the most different from Java
 of the popular JVM languages, and it is so for a reason—we are going
 to have to do things differently if we are going to leverage multicore,
 and our large OO programs have become spaghetti. If you really want to
 learn something new, rather than just do what you are currently doing
 slightly differently, Clojure is a good choice.
	

	ms:
	 OK, imagine you’re talking to an old Lisp hacker from way back,
 which in fact you are. And let’s say that I’ve moved on. Performance,
 libraries, fitting in with the crowd, for some reason I left Lisp.
 Why is Clojure the reason for me to get back into it?
	

	rh:
	 As a Lisp dialect, Clojure offers everything you love about
 Lisp—interactive development, elegance, succinctness, extensibility,
 expressiveness. It is aimed squarely at those areas that had caused
 people to leave, or not be able to use, Lisp in the past, in
 particular the library and poor citizenship issues. It is poised to
 leverage the huge amount of work done in Java, and in turn be
 leveraged by Java programs. In addition, Clojure moves Lisp forward
 in incorporating some of the best ideas developed over the
 years—building the core library on interface-based abstractions, lazy
 sequences, first-class associative data structures, etc. Lisps have
 been called functional programming languages, Clojure embraces that
 more deeply than do Common Lisp or Scheme.
	

	ms:
	 Clojure is now at version 1.0. That can mean different things.
 Beyond being good for exploring functional programming, is
 Clojure ready for prime time? Say I want to use is right now for
 production work. How solid is Clojure?
	

	rh:
	 Clojure is quite solid. It has a very small core that rarely changes,
 and thousands of users pounding on it. It integrates with the Java
 tool ecosystem, so JVM debuggers, profilers etc work right out of the
 box. And IDE integration efforts are well underway, with good plugins
 for NetBeans and IntelliJ.
	

	ms:
	 Let’s try some direct comparisons. Say I’ve devoted some time to
 learning Erlang. Why should I choose Clojure over Erlang?
	

	rh:
	 I’m loathe to engage in us vs. them, especially with Erlang, which I
 quite admire. If you truly have an application for which Erlang is
 best suited, e.g. a low-level distributed communications app with high
 uptime requirements, it’s hard to beat it. Clojure is more of a
 general-purpose language, has better compute performance, better
 in-process SMP concurrency support, and a much better library and
 interoperability story. For distribution, you can chose from many
 techniques and tools, including message queues, some of which are
 written in ... Erlang.
	

	ms:
	 All right, the same question for the new Scala developer.
 Why should I choose Clojure over Scala?
	

	rh:
	 Clojure is simpler. It is dynamic. Having fewer paradigms to support,
 it is more focused on being functional. Being a Lisp, it has a regular
 syntax, and syntactic extensions are very consistent. Not being
 object-oriented, Clojure libraries have a different structure,
 encouraging a greater use of generic data structures, yielding higher
 interoperability. Clojure is based on the idea that immutability and
 functional programming are more important contributors to program
 robustness than is static typing. If these values resonate with you,
 you will likely prefer Clojure, but I certainly expect Clojure and
 Scala to peacefully coexist.
	

	ms:
	 Well, you’ve convinced me that Clojure is worth a look.
 Thank you for taking the time to chat with us.
	

	rh:
	 Sure. This was a good exercise. Thanks for suggesting it.
	

 Rich Hickey has over twenty years of experience in software development in a
 wide variety of projects from broadcast automation to database design.

 When Things Go Wrong

 Clojure’s Exceptional Handling of Exceptions

 by Stuart Halloway

 Stuart
 wrote the
 book on Clojure, and here he reveals one of its strengths:
 the error-kit Condition system, which gives you greater
 control and flexibility than traditional exception handling.

 If you don’t know about conditions, you
 should. Conditions are basically exception handling, but with
 greater flexibility. Many Lisps feature a condition system, and
 Clojure is no exception (pun inflicted by editor). Clojure’s
 condition system is called error-kit. In
 this article, you will learn how to
 use error-kit, and why you will prefer it
 to plain old exception handling.

Getting the Code

 You don’t need to have bought my book
 Programming Clojure
 to understand this article, but why wouldn’t you want to? ;)
 You can follow along throughout this article by entering the code
 at Clojure’s Read-Eval-Print Loop (REPL). To install a REPL on
 your local machine, download the sample code from
 the book.
 The sample code has its own home page at
 http://github.com/stuarthalloway/programming-clojure.

 The sample code includes a prebuilt version of Clojure, and the
 clojure-contrib library that contains error-kit. To launch a REPL,
 execute bin/repl.sh (Unix) or bin\repl.bat (Windows) from the
 root of the sample code project. You should see the following prompt:

	 	Clojure

	 	user=>

 For your reference, the completed sample is included in the download
 at examples/error_kit.clj.

 A Simple Problem: Parsing Log File Entries

 To see how error-kit handles exceptions, we’ll create a simple
 application and perpetrate some errors. Let’s write an app that
 parses log file entries. Our log file entries will look like this:

	 	2008-10-05 12:14:00 WARN Some warning message here...

 In this imperfect world, it is inevitable that some miscreant
 will pass bad data to the log file parser. To deal with this,
 we will define an error:

	 	(use 'clojure.contrib.error-kit)

	 	(deferror malformed-log-entry [] [msg]

	 	 {:msg msg

	 	 :unhandled (throw-msg IllegalArgumentException)})

 The error takes a single argument, a msg describing the problem.
 The :unhandled value defers to a normal Clojure (Java) exception
 in the event that a caller chooses not to handle the error. (The
 empty vector [] could contain a parent error, but we won’t need
 that in this example.)

 Now, let’s write a parse-log-entry function:

	 	(defn parse-log-entry [entry]

	 	 (or

	 	 (next (re-matches #"(\d+-\d+-\d+) (\d+:\d+:\d+) (\w+) (.*)" entry))

	 	 (raise malformed-log-entry entry)))

 The first argument to or uses a regular expression to crack a log
 entry. If the log entry is not in the correct format, the second
 argument to or will raise an error. Try it with a valid log entry:

	 	(parse-log-entry

	 	 "2008-10-05 12:14:00 WARN Some warning message here...")

	 	-> ("2008-10-05" "12:14:00" "WARN" "Some warning message here...")

 Of course, we could do more than just return a simple sequence,
 but since we are focused on the error case we’ll keep the results simple.

 What happens with a bad log line?

	 	(parse-log-entry "some random string")

	 	-> java.lang.IllegalArgumentException: some random string

 An unhandled error is converted into a Java exception,
 and propagates as normal.

 The Problem with Exceptions

 So why wouldn’t we simply throw and catch exceptions? The problem
 is one of context. At the point of an exception, you know the
 most intimate details about what went wrong. But you do not
 know the broader context. How does the calling subsystem or
 application want to deal with this particular kind of error?
 Since you do not know the context, you throw the exception back
 out to someone who does.

 At some higher level, you have enough context to know what to do
 with the error, but by the time you get there, you have lost the
 context to continue. The stack has unwound, partial work has been
 lost, and you are left to pick up the pieces. Or, more likely, to
 give up on the application-level task that you started.

 The Solution: Conditions

 Conditions provide a way to have your cake and eat it too.
 At some high-level function, you pick a strategy for dealing
 with the error, and register that strategy as a handler.
 When the lower-level code hits the error, it can then pick
 a handler without unwinding the call stack. This gives you
 more options. In particular, you can choose to cope with the
 problem and continue.

 Let’s say that you are processing some log files that include
 some garbage lines, and that you are content to skip past these
 lines. You can use with-handler to execute the code with a
 handler that will replace bad lines with, for example,
 a simple nil.

	 	(defn parse-or-nil [logseq]

	 	 (with-handler

	 	 (vec (map parse-log-entry logseq))

	 	 (handle malformed-log-entry [msg]

	 	 (continue-with nil))))

 The call to continue-with will replace any malformed log entries
 with nil. Despite the structural similarity, this is not at all
 like a catch block. The continue-with is specified by an
 outer calling function (parse-or-nil) and will execute inside
 an inner, called function (parse-log-entry).

	To test parse-or-nil, create a few top level vars, one with
 a good sequence of log entries, and one with some corrupt entries:

	 	(def good-log

	 	 ["2008-10-05 12:14:00 WARN Some warning message here..."

	 	 "2008-10-05 12:14:00 INFO End of the current log..."])

	 	

	 	(def bad-log

	 	 ["2008-10-05 12:14:00 WARN Some warning message here..."

	 	 "this is not a log message"

	 	 "2008-10-05 12:14:00 INFO End of the current log..."])

 The good-log will parse without any problems, of course:

	 	(parse-or-nil good-log)

	 	-> [("2008-10-05" "12:14:00" "WARN" "Some warning message here...")

	 	 ("2008-10-05" "12:14:00" "INFO" "End of the current log...")]

 When parsing hits an error in bad-log, it substitutes a nil
 and moves right along:

	 	(parse-or-nil bad-log)

	 	-> [("2008-10-05" "12:14:00" "WARN" "Some warning message here...")

	 	 nil

	 	 ("2008-10-05" "12:14:00" "INFO" "End of the current log...")]

 OK, but what if you wanted to do more than just return nil?
 Maybe the original API signals an error, but doesn’t do any logging.
 No problem, just impose your own logging from without:

	 	(defn parse-or-warn [logseq]

	 	 (with-handler

	 	 (vec (map parse-log-entry logseq))

	 	 (handle malformed-log-entry [msg]

	 	 (continue-with (println "****warning****: invalid log: " msg)))))

 Now, parsing the bad-log will log the problem.

	 	(parse-or-warn bad-log)

	 	****warning****: invalid log: this is not a log message

	 	-> [("2008-10-05" "12:14:00" "WARN" "Some warning message here...")

	 	 nil

	 	 ("2008-10-05" "12:14:00" "INFO" "End of the current log...")]

 Of course a production-quality solution would use a real logging API,
 but you get the idea. Slick, huh?

 Make Life Simple For Your Callers

 It gets even better.

 If you know in advance some of the strategies
 your callers might want to pursue in dealing with an error, you
 can name those strategies at the point of a possible error, and
 then let callers select a strategy by name. The bind-continue
 form takes the name of a strategy, an argument list, and a form
 to implement the strategy.

 So, continuing with our log example, you might choose to provide
 explicit skip and log strategies for dealing with a parse error:

	 	(defn parse-or-continue [logseq]

	 	 (let [parse-log-entry

	 	 (fn [entry]

	 	 (with-handler (parse-log-entry entry)

	 	 (bind-continue skip [msg]

	 	 nil)

	 	 (bind-continue log [msg]

	 	 (println "****invalid log: " msg))))]

	 	 (vec (map parse-log-entry logseq))))

 parse-or-continue has no continue-with block, so a bad log entry
 will default to a Java exception:

	 	(parse-or-continue bad-log)

	 	-> java.lang.RuntimeException: java.lang.IllegalArgumentException:

	 	 this is not a log message

 Callers of parse-or-continue can select a handler strategy with
 the continue form. Here, the call selects the skip strategy:

	 	(with-handler (parse-or-continue bad-log)

	 	 (handle malformed-log-entry [msg] (continue skip msg)))

	 	-> [("2008-10-05" "12:14:00" "WARN" "Some warning message here...")

	 	 nil

	 	 ("2008-10-05" "12:14:00" "INFO" "End of the current log...")]

 And here it selects the log strategy:

	 	(with-handler (parse-or-continue bad-log)

	 	 (handle malformed-log-entry [msg] (continue log msg)))

	 	****warning****: invalid log: this is not a log message

	 	-> [("2008-10-05" "12:14:00" "WARN" "Some warning message here...")

	 	 nil

	 	 ("2008-10-05" "12:14:00" "INFO" "End of the current log...")]

 Notice the continue forms pass an argument to the bound continues.
 In these examples we just passed the error message, but the parameter
 list could be used to implement arbitrary coordination between
 continue calls and bound continue forms. This is powerful.

 Laziness and Errors

 Most Clojure data structures are lazy, which means that they are
 evaluated only as needed. To make these lazy structures play nicely
 with conditions (or even plain old exceptions, for that matter),
 you have to install your handlers around the code that actually
 realizes the collection, not around the code that creates
 the collection.

 This can be confusing at the REPL. Can you spot the problem below?

	 	(with-handler

	 	 (map parse-log-entry bad-log)

	 	 (handle malformed-log-entry [msg]

	 	 (continue-with nil)))

	 	-> java.lang.IllegalArgumentException: this is not a log message

 The code above is trying to add a handler, but it isn’t working.
 Stepping through the sequence of events will show why:

 	
The “with-handler” block sets a handler.

 	
The “map” creates a lazy sequence.

 	
The “handler” block exits, returning the lazy sequence to the REPL.

 	
The REPL realizes the sequence to print it, but by now the handler is gone. Oops.

 In the earlier examples we avoided this problem by explicitly
 realizing the sequence with calls to vec. Here’s the takeaway:
 In your own applications, make sure to install handlers around
 realization, not instantiation.

 Wrapping Up

 Traditional exception handling gives you two points of control:
 the point of failure, and the handler. With a condition system,
 you have an all-important third point of control. Handlers can
 make continues available at the point of failure. Low-level
 functions can then raise an error, and higher-level functions
 can deal with the error at the point it occurred, with full context.

 If you have ever found a large project staggering under the weight
 of exception handling code, you might want to consider giving
 conditions a shot.

 Notes

 The choice of log file parsing for the example was inspired by a
 similar example
 in Peter Seibel’s excellent book
 Practical Common Lisp.

 Copyright 2009 Stuart Halloway. Used with permission.

 Stuart Halloway is a co-founder and CEO of Relevance, Inc.
 Relevance provides development, consulting, and training
 services based around agile methods and leading-edge
 technologies such as Ruby and Clojure. In addition to
 Programming Clojure, Stuart has authored
 several other books, including Component Development for
 the Java Platform and Rails for Java Developers.

 Pragmatic Publishing

 Dave Thomas Talks about Ebooks, Agility, and the Future of Books

 interviewed by Michael Swaine

 For our inaugural issue (or First Iteration) it seemed appropriate to talk with one of
 the Pragmatic Programmers. Dave Thomas was willing to chat about the
 decisions behind Pragmatic Bookshelf’s comprehensive ebook program
 and about the revolutionary changes going on in publishing.

 A revolution has been going on in publishing, and current economic
 conditions seem to have accelerated it. At the end of March,
 Bookseller reported that the printing industry was in its worst
 state in 18 years.

 Newspapers are dropping like flies. Clay Shirky points out that
 newspapers weren’t blindsided by the internet; it’s just that
 none of the perfectly reasonable strategies they came up with
 worked, because there literally is no new model for newspapers
 to replace the old one.

 Books are also being hurt by the internet and the economy.
 HarperCollins cut Collins, Random House is cutting staff in waves,
 and Borders looks doomed.

 At the same time, actual newspaper readership (print plus online) is up,
 and some book publishers in some markets are doing very well. It
 was in this unsettled context that the Pragmatic Bookshelf recently
 began producing all of its books in every popular electronic format:
 .mobi (e.g., Amazon Kindle), .epub (e.g., Apple iPhone),
 and .pdf in addition to print.
 And if you buy one, you’ve got them all: you have purchased a license
 to the content. You can purchase the ebook for your iPhone and then
 when you get an Amazon Kindle, you can download that version, too,
 because you already own it.

 It seemed like an ideal time to chat with Dave Thomas, one of the
 two owners of the Pragmatic Bookshelf, about ebooks, agility,
 and the future of publishing.

	ms:
	 These are interesting times to be in publishing. Clay Shirky has
	 described this as being inside a revolution, and says that the
	 inside of a revolution feels like chaos, like constant change.
	 Are we inside a revolution? And if so, how do you adapt to constant change?
	

	dt:
	 We are inside a revolution. It’s like being in a whirlwind. And no,
	 you can never adapt to constant change, but you can deal with it.
	 The trick is you have to be agile, you have to be able to refocus
	 quickly. And we know something about that: to be able to refocus
	 quickly you need to have all the mechanical stuff, all the
	 non-intellectual stuff, automated. That’s something we work
	 on all the time, to be as automated as possible.
	

	ms:
	 Although many book publishers are struggling, at least with books
	 there is a plausible path forward, unlike the situation with
	 newspapers. I’m referring to ebooks. You have embraced electronic
	 publishing since the start and now all your books are available
	 in multiple ebook formats. And it seemed like you were able to
	 convert them to the new formats almost overnight.
	

	dt:
	 Because we built our company on agility, we’re in a comfortable position.
	 All our books are authored in custom markup so all our content
	 can be easily repurposed for multiple platforms, Kindle for example.
	 It wasn’t literally overnight, though; it took a few days.
	 But that’s because I did it all myself, one person, working
	 on it part-time. And although we use custom markup—automating
	 as much as possible—we converted each book individually to give
	 each one its individual treatment. At this point we think all the
	 books look pretty good on all supported devices.
	

	ms:
	 Any time you move content to a new medium there are unanticipated
	 consequences. A recent New York Times article raises an
	 interesting challenge for electronic books: once you’re on
	 the platform, more immediately gratifying activities like games
	 are just a click away from the book. Reading has always had to
	 compete with distractions, but with ebooks it has to compete
	 more aggressively, it seems.
	

	dt:
	 I disagree that games and such are competition for ebooks. Or rather,
	 I totally agree when it comes to fiction. I would be afraid
	 if I were publishing novels. But for our kind of
	 publishing—nonfiction, reference oriented—games and the like
	 are not competition at all. They address different needs.
	 I have a time when I want to learn and a time when I want to play.
	 No, the competition for the ebook isn’t games, it’s the Web
	 and free content.
	

	 ms:
	 Or even not-free content. In addition to new ways of presenting
	 the contents of books, we are seeing new ways of marketing books,
	 including self-published, print-on-demand books, like
	 Author Solutions and Lulu. You can publish and sell a book on Amazon
	 now for a few hundred dollars. If you have a recognized expertise,
	 a website, and a following, you can sell on your own site. The odds
	 are long but the startup costs are low, at least apart from the
	 sizable investment of your own time.
	

	 dt:
	 Lulu and other self-publishing options are a step up from simply
	 selling on the Web. So why is that not a threat to ebooks?
	 That really comes down to the question of what publishers offer.
	 We think about that a lot. Most authors need help to get a book out.
	 Help organizing their material. Help finding their voice.
	 They need a coach, they need encouragement to get it finished.
	 That’s something that a publisher can offer. Also, we’re a place
	 where people come to buy books. When it works right, it’s a mutually
	 beneficial relationship. A good publisher’s reputation is built
	 on the work of its authors, and the authors benefit from that reputation.
	

	ms:
	 So how significant are ebooks? Are they the future of books,
	 or of major categories of books?
	

	dt:
	 That’s difficult to answer. I have mixed feelings about the fact that
	 as an industry we have started using this term ebook. I can see why
	 we do: it’s a comfortable metaphor. But it leads us into some
	 strange decisions. For example. when we’re reading on screen,
	 we’re clicking through
	 a document page by page. Why? Why would we want to replicate
	 one of the worst features of print? I’m concerned that the word “book” in
	 “ebook” implicitly limits where we think we can go.
	

	ms:
	 So where might we go? Do you see something new that eventually
	 replaces the ebook of today?
	

	dt:
	 Taking existing content and repurposing it for ebook readers is
	 the first baby step. We need to look beyond that. But asking
	 what will replace the ebook is looking at it the wrong way around.
	 The fundamental issue we have to address is not what will happen
	 to the book but what will happen to content. The real question is
	 what we want to create in terms of content.
	

	ms:
	 So how do you go about answering that?
	

	dt:
	 Listen to the reader. The two keys to dealing with change are being
	 agile and listening to your customers. In the past five years control
	 has passed from supplier to consumer, in publishing and many other
	 markets. That’s something that was talked about and it’s really
	 happening, and it’s a wonderful position to be in. Well, maybe
	 in the Chinese curse sense of wonderful. But it can be wonderful
	 if you embrace it. The old model was the publisher gets to decide
	 what we read. The new model is you listen to what your readers want
	 and try to produce content for them. You succeed by listening to your
	 customers and delivering what they want.
	

	ms:
	 And what do you find that readers want?
	

	dt:
	 One thing we’re learning that readers want is customizable content.
	 When we get a new video game in my family, I want to start playing right away,
	 but my kids want to spend the first half-hour setting things up: the colors,
	 their characters’ names, and so on. They really enjoy customizing their
	 environment—that’s what’s important to them. You need to deliver
	 content that the customer can adapt to their situation. Some people
	 want books, some people want audio presentation. Different people
	 want different delivery of the same content. That’s why we’re doing
	 screencasts, seminars, podcasts, this magazine, in addition to books
	 on paper and in a variety of electronic formats. But that’s really
	 just the beginning. We will be customizing the content—and enabling
	 readers to customize the content—even more as we listen to our
	 readers and determine what they want and need.
	

	ms:
	 How do you do that?
	

	dt:
	 How do you take an idea and create multiple implementations of it?
	 It’s a problem. Customizability is hard. Most publishers can envisage
	 incredibly rich content models. The problem is how do you get them made?
	 Right now we can cobble something together with duct tape and
	 Ruby scripts, but that’s not a solution. The challenge is that writing
	 itself is hard. The average book is a labor of love. You tell an author
	 that he also has to produce a podcast and courseware and you’ll
	 drastically reduce the number of books that even get started.
	

	ms:
	 So what’s your strategy?
	

	dt:
	 Again, you have to trust your readers. They are the ones who know
	 what they need and want. Publishers traditionally have tried to tell
	 them what they need. We won’t do that. They say we don’t want DRM,
	 well neither do we, so no DRM. We sell direct so we have that
	 relationship with the customer, so we can have a conversation. And we
	 use that conversation to inform our various experiments with different kinds of
	 content delivery.
	

	ms:
	 I’m learning that you mean that pretty literally. You really engage
	 with your readers. You do your own support. What if what readers want
	 is unreasonable or unrealistic?
	

	dt:
	 You have to draw a fine balance between being reactive and
	 being conservative. We play with a lot of stuff that never
	 sees the light of day. We look for the long-term value as
	 opposed to the short-term gain.
	

	ms:
	 It seems to be working.
	

	dt:
	 It seems to be. Last year we celebrated our fifth year in publishing.
	 We’re a young company, but we’re growing every year, even in
	 this economy. Publishers are struggling all around us and we’re
	 going from strength to strength. We’re having a whole lot of fun.
	 I just wish there were about three times as many hours in the day
	 to do all the things we want to do.
	

 The Quiz

 This Month: A is for APL

 So you think you know programming languages? Challenge yourself
 with this month’s puzzle. Answer next month.

 Below is a simple acrostic. On the left you’ll
 find 6 examples
 of programming languages. Write the first letter of the name of
 the language in the box at the
 right. When you’re done, the right column will spell the name of
 a seventh language. See how far you can get before you start
 searching.

 	

	 	Process Class Creator;

	 	Begin

	 	 While true do begin

	 	 Activate New Consumer(Time);

	 	 Hold(Uniform(5, 15, 1));

	 	 End While;

	 	End of Creator;

 	

 	

	 	<Any T, Any U> T first((T,U) tuple) {

	 	 (T t, U u) = tuple;

	 	 return t;

	 	}

 	

 	

	 	PROC null.farm(CHAN OF ADDR.TASK.STREAM from.farm,

	 	 CHAN OF ADDR.RESULT.STREAM to.farm)

	 	 PAR

	 	 from.farm ? CASE no.more.task.packets

	 	 to.farm ! no.more.result.packets

	 	:

 	

 	

	 	LET start() = VALOF

	 	$(FOR i = 1 TO 5 DO writef("%n! = %i4*n", i, fact(i))

	 	 RESULTIS 0

	 	 $)

	 	 AND fact(n) = n=0 -> 1, n*fact(n-1)

 	

 	

	 	PROCEDURE speak*(VAR bird : Birds.Bird);

	 	BEGIN

	 	 WITH bird : Cuckoos.Cuckoo DO

	 	 bird.sound := "Cuckoo!";

	 	 | bird : Ducks.Duck DO

	 	 bird.sound := "Quack!";

	 	 ELSE bird.sound := "Tweet!";

	 	 END;

	 	END setSound;

 	

 	

	 	HAI

	 	CAN HAS STDIO?

	 	IM IN YR LOOP UPPIN YR NUM TIL BOTHSAEM NUM AN 10

	 	 VISIBLE SUM OF NUM AN 1

	 	IM OUTTA YR LOOP

	 	KTHXBYE

 	

 Answer to Last Month’s Quiz

 42

 Shady Illuminations

 Microsoft Buys a Verb

 by John Shade

 Can Microsoft really challenge Google on its own turf? And why would they even try? John Shade casts a jaundiced eye at Bing, Wolfram Alpha, and other attempts to transcend Google.

 Microsoft is an agile company.

 You doubt me? I can understand that. I’m pretty sketchy at the best of times. You probably figure that being agile is one of those lean and hungry things, while Microsoft is more of a fat and bloated thing. You get no argument from me. After the first billion dollars or so, any company can pretty much forget about being described as lean, even by its most loyal sycophants. But I’m standing my ground on hunger: no matter how huge and bloated Microsoft gets, it always stays hungry. Hunger got inside Microsoft when it was just a greedy leer in Bill Gates’s eye. Microsoft has hungry DNA. Hungry, paranoid, and quintessentially nerdy DNA.

 Yes, nerdy. I hate to tell you this, but as long as there is a Microsoft you will never get rid of the popular stereotype of a computer nerd. Microsoft makes the stereotype true. Microsoft as a company is killer smart, socially inept, and wears orange socks.

 This is mere common knowledge.

 But agile, you ask? Yes, agile. The Microsoft agility mantra is Agility through Paranoia. Bill Gates—or the spirit of Bill Gates that is the twisted soul of Microsoft—has always been motivated by the certainty that someday some bright young hacker will come along and redefine the market, rearchitect the platform, rewrite the rulebook, move the cheese, or somehow change some fundamental something and rip the rightful riches from Microsoft’s jewel-encrusted belly.

 Technically it’s always two bright young hackers. Andreessen and Bina, Filo and Yang, Page and Brin. Why two? Think Gates and Allen: Microsoft itself was founded by two bright young hackers who changed the game, so they know how the game-changing game is played. That’s the Microsoft corporate view of pair programming, as a matter of fact: some pair of programmers somewhere is at this very moment plotting our destruction. You probably didn’t know that.

 What Microsoft Wants

 So I ask myself, what does Microsoft, in all its bloated nerdy paranoid agility, want? Easy, it wants what Google has. It wants a verb.

 The verb “to google” is in the OED. The OED! People who’ve never used The Google talk glibly about googling their acquaintances. Google has attained to the holy pantheon of Verbed Brands. It’s up there with xerox and slashdot and twitter and tivo on Brand Olympus. Even Apple and Sony aren’t verbs. Once you’re verbed, you’re forever. You can’t buy cred like that.

 Unless you’re Microsoft.

 Microsoft would like to buy a verb. Microsoft has never had a verb. Nobody words a letter or excels a budget. Some people use powerpoint as an epithet, but it’s not the same. Microsoft wants to buy a verb, and the verb it wants to buy is bing. If Microsoft has its way you will soon be binging left and right. You’ll tell your friends to just bing it, you’ll assure your boss or client, hey no problem, I can bing that. You’ll confess to spending all afternoon binging. You’ll become a hardcore binger.

 Bing, as you know unless you’ve been living under a hype-blocking rock, is the name Microsoft has given to the latest version of its Live Search technology. I liked Live Search. The name, I mean, not the search tool. Live Search was a straightforward name; it had no personality, but it had character. But Live Search suffered from two problems. First, Google owns search. Second, Google owns the word for search. Live Search? Is that something you use to google things? See? It doesn’t work. It’s quixotic to try to compete with the company that owns the category, but it’s flat-out stupid to try to compete with the company that owns the word for the category.

 But Microsoft can’t walk away from search any more than it could walk away from the eyeball battlefield of the 1990s that was hilariously miscalled the browser “market,” and for the exact same reason. The hive mind that is the Microsoft brain trust lives in mortal fear of those bright young hackers who change the rules of the game. And Page/Brin is the new Andreessen/Bina. In the 1990s the emerging center of the galaxy was the browser window; in the 2000s it’s the search engine results page. The SERP.

 So Microsoft has to compete with Google but it can’t compete with Google. What’s the solution? Easy: redefine the category. Declare search dead and christen its replacement. Break a bottle over its bow and call it Bing.

 Here’s how it’s intended to work: Google owns search and the name for search, but search is just a service. The SERP, though, is concrete. It’s the internet’s prime real estate. That’s what you need to own, and if you can peel that away from Google, you win. So you just need to bribe people to come to your SERP and somehow get them to stay. Then you monetize the heck out of it. Flog those eyeballs for all they’re worth.

 OK, you see the flaw in this plan, I suppose. To get people to hang around on your binging SERP, you’ve got to make it sticky. Well, even I know how to accomplish that: the page just needs to be extremely well designed, focused with laserlike intensity on function, rich, simple, and elegant. That’s all. And you just know that Microsoft’s natural inclination is to chintz it up with five flavors of gingerbread and dress it in orange socks. If anyone can create a non-sticky SERP, it’s Microsoft.

 The BitTorrent of Search

 To see how you might go about end-running around Google with a better SERP, take a look at Cuil. I’m sure Microsoft did. Cuil indexes massive amounts of data, analyzes the context of discovered search terms, and presents the results as a sort of newspaper front page because, hey, nothing says 2009 like a newspaper. Cuil usually figures out that your search term has several meanings and offers the opportunity to dig deeper in any of these meanings in a sidebar, sort of like a Wikipedia disambiguation page.

 The key is to claim that you’re doing more than just search. Semantic Knowledge Discovery through Relevance-Intuiting Neural Network Algorithms. I just made that up, but it’s more or less the template. Feel free to steal it. Chances are, I did. Yebol, in fact, promises smarter search through neural networks. Wowd wants to be the BitTorrent of search. Hakia and Clusty do clustering: grouping semantically-related results into categories for further search. So does Cuil, it seems to me. So does Bing. So, in fact, does Google, but we’re not talking about Google here.

 The one thing you absolutely must do is to refer to Google’s SERP as “ten blue links.” Because, you know, blue is so 2008.

 Or if you’re a super-genius you can skip search entirely and just compute the answers people are looking for. That’s what Wolfram Alpha claims to do. After reinventing science, super-genius and Mathematica language developer Stephen Wolfram retreated to his secret lab in an undisclosed location at 100 Trade Center Drive in Champaign, Illinois. Wolfram is so brilliant that he powers light bulbs, so you just knew he was working on some radical project destined to stun the world.

 Now after seven years he has emerged, and the world is well and truly gobsmacked. Turns out the polymathematician inventor of A New Kind of Science has been working on a search engine. Or rather, A New Kind of Google. Or maybe A New Kind of Interface to Wikipedia.

 Wolfram Alpha is the eponymous answer engine, capable, according to its inventor, of parsing English-language queries and not merely looking up but actually computing the answers using the awesome computational power of Stephen Wolfram’s brain channeled through Mathematica functions and crunched on multiple supercomputers, ultimately to be displayed as glorious Gif images.

 As soon as Wolfram Alpha, or WA, as I like to call it, went online, I was there to poke it with some pointed questions.

 Me:
 What do they call a quarter pounder with cheese in France?

 WA:
 Wait, wait, I know this.

 Me:
 I’m wai-ting.

 WA:
 Assuming any type of McDonald’s Quarter Pounder | Use McDonald’s Quarter Pounder, plain or McDonald’s Quarter Pounder, with cheese instead.

 Me:
 With cheese, please.

 WA:
 McDonald’s Quarter Pounder, with cheese: serving size 1 sandwich (185 g), total calories 460, total fat 24 g, saturated fat 9 g, trans fat 1 g.

 Me:
 Argh. And in France they call it—?

 WA:
 France: country, calling code +33.

 Me:
 Maybe we should try something simpler. Try this: how many ounces per pound?

 WA:
 Result: 0.0625.

 Not in my kitchen it isn’t.

 Bing: Google, Embraced and Extended

 So how terrible is Bing? Now, now that’s not a healthy attitude. Just look where that kind of cynicism has gotten me. The fact is, Bing is “much better than expected,” to quote one reviewer. That’s the kind of treatment you come to expect if you’re Microsoft: “We assumed it would be crap, but it’s not half bad.” Bing is not half bad. Here are some of the areas where Bing is clearly superior to Google:

 	

 Shopping. For example, when you’re looking for things to
 buy, Bing has a cashback program. (Microsoft will bribe you
 to use Bing.)

 	

 Travel advice. Bing gives good advice on airline travel
 using the Farecast service Microsoft bought. (Bing excels at
 promoting Microsoft properties.)

 	

 Video. When Bing finds a video, it doesn’t just give you one
 of those blue links, it plays the video for you right there
 in the SERP. (Testing the video copyright waters for the
 rest of us.)

 	

 Protecting you from your nasty self. If you live in India,
 you won’t be troubled with inappropriate sexual offers
 because Bing won’t let you search for “sex.” (That’s what
 Craigslist is for.)

 Danny Sullivan, the Seymour Hersh of search engines, complains that Bing clutters up its fine collation of travel, shopping, and local results with paid listings. I think Danny misses the point. Microsoft spent eighty million dollars promoting Bing. (And that was without Jerry Seinfeld.) It’s got to get that eighty million back some way. That’s why Microsoft has redesigned MSN to funnel visitors into Bing. Because they’re not going to www.bing.com. And it’s probably why they’re hawking all that Bing bling. Although Microsoft being Microsoft, I’m not sure whether Bing coffee mugs are intended as a way for Microsoft to make money off Bing or to spend money on Bing.

 Because Microsoft isn’t stopping at a mere eighty million dollars. The company’s sitting on umpty billion in cash and doesn’t know what to do with it. Trying to take on Google in search is really a brilliant idea if your problem is how to burn through a few billion fast. So maybe they plan to broadcast those Bing tchotchkes on the breeze like AOL CDs.

 Then again, Microsoft doesn’t have to outrun the bear. You know the old joke:

 Two lawyers are hiking through the woods and spot an unfriendly-looking bear. The first lawyer pulls a pair of sneakers out of his briefcase (in this joke, lawyers carry briefcases while hiking through the woods, OK?) and puts them on. The second lawyer stares at him and says, “You’re crazy! Bears can run like 35 miles an hour! You’ll never be able to outrun that bear!”

 “I don’t have to outrun the bear,” the first lawyer says. “I only have to outrun you.”

 It wouldn’t have to be two lawyers, of course, but almost any joke is improved by putting a lawyer in it. OK, just to be repulsively obvious, lawyer number two is Yahoo. And Bing did indeed outrun the second lawyer during Bing’s honeymoon period.

 Google’s response to all this sincerest form of flattery? Why, Google Squared, of course. If they’re going to raise the pot we’ll double down, Google says, mixing its card-playing metaphors. Google Squared is a Google Labs project that present search results in tabular form because the dazzling success of Wolfram Alpha and Cuil and Bing and the rest has convinced the Google gang that what you really want on your SERP is structured search result data, and, well, putting it in a spreadsheet makes it structured, right? Right.

 As God is my witness, I thought turkeys could fly.

 Looking at early tests of this project, I have to conclude that this turkey is not the exception to the no-fly rule. In fact the only explanation I can see is that Google Squared is snarkware. It’s Google’s way of making fun of the competition. They’re such a fun-loving crowd.

 But the one shining and enduring truth of all search engines is this: most of what they give you is irrelevant, useless, or wrong. For all its computational power, Wolfram Alpha doesn’t know how many ounces there are in a pound. Clusty and Hakia and Bing and Cuil know, but they get other things wrong. Google gets it right with its first blue link: “1 pound = 16 ounces.” Yay, Google. But for its second blue link it quotes Yahoo Answers: “I thought it was 12, but it may be 16, I don’t know.” Woohoo, Yahoo.

 You rarely get such refreshing honesty from a search engine.

 John Shade was born in Montreux, Switzerland in 1962. Subsequent internment in a series of obscure institutions failed to enlighten him so much as a foot-candle. Today he frets away the idle hours wondering if you got the light bulb joke.

 Calendar

 Going to OSCON in July? Maybe we’ll see you there.
 Or at another of these upcoming events.

 	July 9-12, Toronto, Ontario
FutureRuby Conference

 	July 15-17, Reston, VA *SOLD OUT*
Advanced Ruby Studio

 	July 20-24, San Jose, CA
OSCON

 	July 15, Southern District of New York

	 Deadline for former IBM executive Papermaster to testify
	 under penalty of perjury that he has not used or disclosed
	 IBM confidential information, and that he does not intend to
	 do so.
	

 	Wed Jul 22, OSCON 2009, San Jose, CA

	 Sessions: Just Enough C For Open Source Projects; Effective
	 Job Interviewing from Both Sides of the Desk
	
Andy Lester, author of Land the Tech Job You Love

 	Wed Jul 22, OSCON, San Jose, CA
Session: Testing iPhone Apps with Ruby and Cucumber
Ian Dees, author of Scripted GUI Testing With Ruby

 	Wed Jul 22, OSCON, San Jose, CA
Session: Practical Object-Oriented Models in SQL
Bill Karwin, author of SQL Antipatterns

 	July 24-25, London
Rails Underground

 	Fri Jul 24, London, UK
Rails Underground
Maik Schmidt, author of Enterprise Recipes with Ruby and Rails

 	July 30-Aug 1, Philadelphia, PA
RubyRX / AgileRX

 	Thu Jul 30, Philadelphia, PA
AgileRX
Esther Derby, author of Behind Closed Doors: Secrets of Great Management; Agile Retrospectives: Making Good Teams Great

 	Thu Jul 30, Philadelphia, PA

	 RubyRX/AgileRX This combo
	 conference in Philly has the best of both Ruby and Agile
	 speakers!
	
Jared Richardson, author of Ship It!

 	Aug 4-7, Reston, VA
iPhone SDK Studio

 	Aug 13-16, San Francisco, CA
Filemaker Developer Conference 2009

 	Aug 19-21, Denver, CO
Ruby on Rails Studio

 	Thu Aug 20, Amelia Island, Florida
Biz Conference
Esther Derby, author of Behind Closed Doors: Secrets of Great Management; Agile Retrospectives: Making Good Teams Great

 	Aug 24-28, Chicago

	 Agile 2009
	

 	Mon Aug 24, Chicago, IL
Agile Coaching workshop, Agile2009 Conference
Rachel Davies and Liz Sedley, authors of Agile Coaching

 	Mon Aug 24, Chicago, IL
Agile 2009
Esther Derby, author of Behind Closed Doors: Secrets of Great Management; Agile Retrospectives: Making Good Teams Great

 	Mon Aug 24, Agile 2009

	 Sessions: Idea Factory (with David Carlton) and
	 Eight Guiding Values
	
Brian Marick, author of Everyday Scripting With Ruby and the upcoming RubyCocoa book

 	Aug 25-28, Denver, CO
iPhone SDK Studio

 	Aug 25
Linux turns 18. Free krill for all!

 	Thu Sep 3, Reston, VA
AgileRX
Esther Derby, author of Behind Closed Doors: Secrets of Great Management; Agile Retrospectives: Making Good Teams Great

 	Fri Sep 4, Washington, DC
RubyRX/AgileRX
Jared Richardson, author of Ship It!

 	Sept. 9-10, Washington, DC
Gov 2.0 Summit

 	Sept 22-24, Cambridge, MA

	 EmTech09
	

 	Sept 28-30, Berlin
NanoTech Europe

images/cover.jpg
Prigmte

